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Abstract  

The mos t  general Lorentz covariant scattering ampl i tude  is constructed for the  elastic 
scattering of neutral  vector bosons  and pions,  using a symmetr ic  spinor descript ion for 
the  vector particles. In the  limit o f  zero mass  for the  vector boson,  the  known  results for 
Compton  scattering are reproduced in a simplified way tha t  avoids discussion of  gauge 
invariance. In this limit the  scattering is generalized f rom pho tons  to any  massless particle. 
Finally, a brief discussion is given o f  the  single-particle pole te rms  in Compton  scattering. 

1. Introduct ion 

The usual approach (see, for example, Heam, 1961; Bardeen & Tung, 1968; 
and Conway, 1968) to the problem of constructing the most general scattering 
amplitude, consistent with Lorentz invariance and invariance with respect to 
the appropriate discrete symmetries, for processes involving particles with spin 
is to form a set of basis vectors from the momenta, and to make invariants 
from them and the spin functions that are available, i.e., gamma matrices and 
Dirac bispinors for spin-½, polarization vectors for spin-1, and so on for higher 
spins. Particularly when some of the particles are massless, this method has 
difficulties because of the necessity of imposing gauge invariance for spin-1 
massless particles and similar conditions for higher-spin massless particles. 

The purpose of this paper is to construct the scattering amplitude, con- 
sistent with Lorentz invariance and invariance with respect to space and time 
reflection and charge conjugation, for the elastic scattering of neutral vector 
mesons and pions. In contrast to previous treatments of this case (see, for 
example, Ebata & Lassila, 1969; Mtiller & Vahedi-Faridi, 1973) the vector 
mesons will be represented by symmetric spinor field operators. This simplifies 
the problem, particularly the massless limit when the vector bosons become 
photons, because gauge invariance is automatically satisfied by the symmetric 
spinors and need not be imposed as an additional constraint. This point has 
been particularly emphasized by Zwanziger (1964, 1965). After constructing 
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the general scattering amplitude, the behavior of the invariants will be examined 
as the vector meson masses go to zero, and in this limit of Compton scattering, 
the scattering process will be generalized from photons to any massless 
particle. Finally, for Compton scattering, the single-particle pole terms will be 
exhibited and shown to be independently gauge invariant, a point of view that 
differs from some discussions of the problem. 

2. Invariant Amplitude 

For the process 

VI(K1) + n(Q1) -~ V2(K2) + lr(Q2) 

let the four-momentum operator - i  3/ax u (in units h = e = 1) be written as K1 
when it operates on the V t field operator, K 2 on V2, etc. so that the order 
of derivative factors may be disregarded. The problem, then, is to construct 
the most general Lorentz invariant ~ operator, defined in terms of the scattering 
operator S by 

s = 1 + i f d4x (x) 

using only the symmetric spinor field operators and their derivatives, subject 
to the spinor wave equations. Invariance of the S operator to space-time trans- 
lations leads to four-momentum conservation for the matrix elements. Con- 
sequently, only three of the field operators have independent derivatives. They 
are chosen to be K1, K 2 and (QI + Q2)/2 =-- Q. In the usual spinor notation z 
a vector meson is described by a symmetric spinor pair X~ G (x), ~% % (x) 

, 1 

coupled by a second-order wave equation. The symmetry makes the number 
of independent components three, appropriate for a spin-1 particle. A pseudo- 
scalar particle is described by a one-component field operator ~(x). 

In detail, the Lorentz covariant, space-inversion, translation and charge 
conjugation covariant ~ operator suitable for the direct reaction (V 2 ¢ V 1) 
and all related processes is 

~ (x )  = {B 1 [XGG (1)~oGG (2) + tp%% (1)Xa,% (2)1 

+ B= [X~G (1)QV,G Qv=G x'r~v: (2) + ¢%% (1)Oa ~;, 0%+= • '  "i'= (2)] 

+B3 [X&,&= (1)Kl')"&' K~ =dq X'r, 3'.. (2) + ~p%% (1)Klav~ ' K2ao.)~ V "~* 5'= (2)] 

+ B4 [Xc~&= (1)/~1 *dq Qy:G Xv, v= (2) + Ca,% (1)Kla ' #, Q%.)= ~0 G ~;= (2)] 

+ Bs [X&,& (1)K~2'G Q%&= X~,, v= (2) 

+ ~a, % ( 1 ) K 2 ~  Qa~ G ~o-~, 4~ (2)] }~b~t 
+ charge conjugate 

2 See, for example, Weaver & Fradkin (1965). 
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The terms in the { } brackets are understood to be symmetrized in the usual 
way, 3 and the amplitudes B i are scalar functions of the independent derivatives. 
Schematically, the ~Y~operator may be written 

5 

= E Bi[Ni +Are] q~qSt 
i=1 

with N~/and N i being charge conjugates. If the initial and final vector mesons 
are identical, then N e = Ni for i = 1, 2, 3 and N{ = Ns, N~s = N 4 so that only 
four of the five invariants remain independent. Rewriting ~ for this case gives 

4 

= ~ A-~li~O t 
i=i 

where 

M1 = {XS, q (1~  s~d= (2) + ~0 a~ci' (1)X~,% (2)} 

M2 = {Xa,&=(1)Q~,,/~, O-y=a= X.~I v= (2) + ~u,~'= (1)Qv,cl ' Qy=&= ¢&,&= (2)} 

M3 = {x&,a= (t)K~I, &,/~=c~= Xy, y= (2) + ~7, ~,= (1)Kly,a ' Kzy~a = ~oa,ci= (2)} 

M4 = {X&,&= (1)(Kx + K2) "t*c~' Ou=¢i= X~,~:= (2) 

+ ~Y':~ (1)(Kx + K2)u,a , O~,=a= ~0 a'a= (2)} 

The matrix elements of ~ ,  integrated over all space.time are proportional to 
the usual T matrix elements, and one finds, for example, the crossing proper- 
ties of the Ai by the standard techniques, i.e., if the vector meson is stir- 
conjugate, then comparison of the two matrix elements 

and 

f d4x<~r(Q2)V(K2) 1~17r(Q1)V(K1)> 

f d4x(Tr(Q2)V(-Ka) 1~17r(Q1)V(-K2)) 

yields the crossing properties. 

3. Masstess Limit 

To study the ~ operator as a function of the vector meson mass, one must 
took in detail at the field operators. They are 

1 (d3P [ E + m v +  o"P]al~ p] 
Xsi,&= (x) = (2rr)a/2 J ~  2(E + my) [E +mv + a" %& 

1 
x ~ ~d&& ~,k)[a(P,k)e iPx +(--1)l-kat(P,-k)e -iPx] 

k = - I  

3 See, for example, Sakurai (1964). 
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and a similar expression for ~o%a~ (x) with a .  P replaced by - a .  P. Here k is 
the polarization quantum number, the a//(p, k) are the momentum spinors 
appropriate for spin-14 and a(P, k), at(P, k) are the destruction and creation 
operators. There are two types of functions to consider as m V goes to zero. 
First, 

XGG (x)mv-m(2rr~3/2 J d3p(zP)l/2~asa s (P, 1) [a(P, 1)e iPx + at(P,-t)e -iPx] 

,*,z--,o 1 f d3p(2p)l/2ql%% (I',-1)[a(P,-1)dex +ai'(P, 1)e -iex] 
~ , %  (X) > ( 2 7 0 3  

because [P + ~ .  P] a R S [P-+. ~" P] %Gqg~ ~ (P, k) = 0 unless k = -+1, respec- 
tively. So the symmet~ric spinor fielc~ ope'~a"~ors go smoothly to the massless 
limit appropriate for the photon. Second, the derivatives of the vector meson 
field operators are proportional to the mass of the vector meson and so go 
smoothly to zero in the massless limit. In detail, the term K~, ~ XGG (x) is 

K'~IsGXGG(x)=mv ~ ~ 2 E+mv vs& 

[ °-e;] 2 x 1 + i +  m 
k=--I 

+(-l)ka'(P'-k)e-WX 0 mv-'° ' mv [ ( ~ d [  1 fd3P__j__4 ~-- 

x [ 1 -  o.[~]v,& [1 +~.P]%&~¢~&(P,O)[a(P,O)e iex 

+at(P,  O)e-WX]) 

which goes smoothly to zero. So, as the vector meson mass goes to zero, the 
invariant M 3 vanishes as rn~-and M 4 vanishes as mr .  There are no relations that 
the invariant amplitudes A i are required to satisfy in this limit, in contrast to 
the usual method. The resulting ~ operator for Compton scattering is 

~ ( x )  = {A 1 [X G G ( I ~ G G  (2) + ~a,% (1)Xa,% (2)1 

+ A 2 [Y&, as (1)QT, G Qv= a= xv, v= (2) + ~i~ v= ( 1 )Qvl s, Qv~ G & '  G (2)]}~bq~* 

to make the connection with the usual tensor formulation (Bardeen & Tung. 
1968) one notes that 

(XG& = (1)~oG&= (2) + ~ocq % (1)X%% (2)} q~q~) ~ Ftav(1)F.v(2~c)* 
(XG&s (t)QT, G QT= &s xv, 7. (2) + ~o7,7= (1)Q7, G Qu=G ~0GG (2)} ~b~bi" 

Fuv(1)Fou(2)OoOv~4? 
4 See the Appendix for a detailed discussion. 
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By using the symmetric spinor formulation one has dealt directly with the 
gauge invariant combination of  electric and magnetic fields. 5 

The above ~ operator for Compton scattering can be easily generalized to 
the elastic scattering of  spin-S massless particles from the same target. The 
result is 6 

O~(x) = {.41 [X&,...d=s(1)~o&, ""&~s(2) + ~o&~ ... a2s (1),,.'% ...%s(2)1 

+A 2 [X¢, ...&=s(1)QV, ~, • • • Q'1~s~=sx.y, ...v=s (2) + ~ '~- . .~s(1)Qv,  a , "  

x Qv=~s  9 6' ...a=s(2)] }~q~t 

4. Pole Contributions 

Once the most general ~ operator for Compton scattering has been derived 
and the appropriate matrix element taken, the question of  determining the 
invariant amplitudes A i arises. Generalized unitarity supplies information 
about A i and, in particular, it leads one to expect contributions from single- 
particle exchanges in the various channels, In an S-matrix theory one finds the 
exchange contributions to the invariant amplitudes following the Cutkosky 
(1960) procedure, and then expands the resulting Lorentz invariants in terms 
of  the previously found M functions, the coefficients being the contributions 
to the A i. 

Neglecting unessential details, generalized unitary" tells one that in the s 
channel (direct channel) the single-pion exchange contributes to the scattering 
amplitude the term v 

4e2el "Qle2 "Q2 6 ( s -  U 2) 
which may be rewritten as 

4eZe1 " Qle2 "Q2 8(s - u 2) = e 2 {-Fuv(1)Fuv(2)/2 

+ [8/(u -/~2)1Fu~(1)Fou(2)QoQ~ 

+ ( s  - u2)c} 5(s - u 2) 

Note that at s =/~2, K1 .Q~ = K2.  Q2 = 0. Since one wants the residue at the 
position s =/j2 the term (s - /~2 )C  does not contribute and the final result 
for the s-channel pion pole is 

K 1 Q2 

,, '  - ~  - - -  

Q1 K2 

e 2 
2 ( s -  t~2 ) " Fuv(1)Fuu( 2 ) 

8e 2 

( s - / 12 ) (u  - Ilz) ruv( lke  ' ' '  

s This point is amplified in the Appendix. 
6 A symmetric spinor with 2S indices has 2S + 1 independent components and is appro- 

priate for describing a spin-S particle. 
7 %,2 are the polarization vectors of the incident and scattered photons, and s and u are 

the usual Mandelstam variables. The pion has charge e and mass/~. 
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A similar calculation gives the contribution of the u-channel (crossed channel) 
pion pole or one may use the crossing symmetry of the amplitudes: The result 
is the same in either case, the final result being 

K1 K2 

.,~' 

Q1 Q2 

Kx /Q2 

e 2 1 1 
I = - -  + ~(1)fu~(2  ) 
i 2 

16e 2 
( s -  la2)(u - la2) vu~'(t)rpu(2)o°ov'~ ''~ 

so the pion exchange leads to products of singularities. This kind of singularity 
structure occurs when the exchanged particle and the identical external par- 
ticle coupled with the photon via a charge (monopole) coupling, and, in fact, 
for this case, all processes involving photons have such singularities. A final 
point to note is that care must always be taken to distinguish between the 
Born approximation and pole contributions to the generalized unitarity 
relations (see, for example, Berends et al., 1967). 

Appendix  

The purpose of this Appendix is to give some details of the momentum 
space spinors 5g~1 ~ ([~, k), and the relation between symmetric spinor field 
operators and the e21ectric and magnetic fields of the photon. 

The momentum spinors may be written as 

~/a,a= (P, O)= (l/x/2)[oga, (P, ½)~a~ (P, _1) + oga, (~,-½)~//a= (P, ½)1 

%,~ (f,, 0) = %, (k -½)% (k --~) 
where 

o - ~  (i' ,±-~)=-+ ( k ± ½ )  

If 0 and ~ are the polar and azimuthal angles of P, then a specific representation 
i s  

~(~' ~)-- [sin 10 ' -~)--[ cos~0 

To make the connection between symmetric spinors and the electric and 
magnetic fields of the photon, one notes (Good, 1957; Haji& Weaver, t969) 
that Maxwell's equations fer the photon can be written as the matrix equation 

S. P~(x) = i (3 /3t )~(x)  
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and auxiliary condition 

(a /ax~)~k(x )  = O, (gi)a~ = -ie/ik 

where ~ is a three-component wavefunction with elements 

f k  = Ek + iBk 

Then, the unitary transformation 

= 

where 

and 

=__1 0 U 0 

t i 

S = USU t 

take the theory to the representation in which 

~i  =×21, ~2 = x/2×~i = x/2xi~,  ~3 = ×22 

A similar analysis connects the combination E - iB and the spinor functions 
~ , % .  Finally, symmetric spinors are related to the antisymmetric tensor 
combination of E and B according to 

~a1~2 ,-, ( - iauo~ o2)a,a2Fuv 

where 0 4 is i times the 2 x 2 identity matrix, another way of obtaining the 
connection. 
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